Quantcast
Channel: Steven Austin – Age of Rocks
Viewing all articles
Browse latest Browse all 6

Dispelling a few myths about Steve Austin’s cave dissolution model

$
0
0
Have you ever wondered how long it takes to dissolve a large cavern out of solid rock? Let’s start simple. Perhaps you have visited a cave in the past or on several occasions over the years. If so, then you know that caves are relatively static in terms of human experience. Common sense thus tells you that cave formation should take generations at the least. On the other hand, you may be familiar with the damage caused by sinkholes, which form when the dissolution of calcite (i.e. limestone) causes the ground to become structurally unsound to the point that it collapses. Calcite dissolution must happen at an appreciable rate, therefore, to explain the formation of new sinkholes every year. So, caves form slowly, but not too slow. Can we get any more quantitative than this?Ideally, yes. One could preface the answer with a qualification, noting that it depends on several factors—the size of the cave, type of rock, the climate and vegetation, etc.—but I expect you’re smart enough to have anticipated this obvious point. If you’re reading these words, it is rather because you understand that for the young-Earth creationist, the answer must be: ‘tens to hundreds of years’. If many thousands of years are required to dissolve large caverns like Mammoth Caves in Kentucky or the Carlsbad Caverns of New Mexico, then it becomes impossible that a recent, global flood deposited the sedimentary rock in which these caves are found.

Rates of cave dissolution: a moot point?

In an earlier post, I discussed the use of speleothems (such as stalagmites) in paleoclimatology, concluding that since we can use multiple independent methods to estimate the age and growth rate of secondary formations, the thousands of speleothems older than ~5,000 years already contradict the global flood hypothesis. I stand by this evidence, and if you are also convinced by it, then it may seem pointless to discuss how long it takes to dissolve caves in the first place. On the other hand, evidence from radiometric dating seems abstract to some, and difficult to understand. I want to add a more tangible approach, therefore, to my argument.

Steve Austin’s cave dissolution model regarding Kentucky limestone

In 1980, Austin published an ICR Acts and Facts article entitled “Origin of Limestone Caves”, in which he argued that given the average rainfall in Kentucky, 59 cubic meters of limestone bedrock could be dissolved each year per square kilometer of land. To put that in perspective, 59 cubic meters is roughly equal to a room 13x13x13 feet in size (i.e. a large bedroom with a high ceiling), and a square kilometer encompasses about 8×8 residential blocks. Since caves dissolve preferentially along flow conduits, each city block might be underlain by a room-sized cavity after only 64 years. After ~4,000 years, the cave system would be equivalent in volume to two Wal-Mart Supercenters (236,000 cubic meters).

Dr. Austin believes that his calculations should alarm conventional geologists who reject his young-Earth timeline—and he is right, seemingly. Geologist Greg Neyman responded, however, that the residents of Kentucky, rather than ‘uniformitarian geologists’, should be concerned by these numbers, “since according to this creation science model, Kentucky would be so full of holes as to be unlivable.” Greg is also correct.

Despite Greg’s critique, young-Earth creationists continue to cite Austin’s cave dissolution model without question (e.g. here). Conversely, geologists continue to assign long ages (tens to hundreds of thousands of years) to cave formation without any reference to Austin’s proposed rate of dissolution. Why the lack of communication?

The problem with Dr. Austin’s model is that he estimates cave formation to occur faster than the facts permit, but still too slowly to account for the world’s large cave systems (like Mammoth Caves in Kentucky, on which he focuses). Even if we grant such rapid dissolution of limestone, it is still difficult to explain how the 500+ kilometers of passages found in Mammoth Caves could have formed since the Flood. Moreover, many of the world’s large cave systems are filled with secondary formations (speleothems) that require themselves many years to form (see Appendix). Dr. Austin and others have thus addressed the problem by treating it in parts, and apparently with the expectation that nobody will recognize one plus one is actually larger than…one.

Fuzzy number crunching: how fast precisely?

For those not yet convinced, I want to examined Dr. Austin’s calculations in detail. In short, he determines the amount of calcite that can be dissolved annually by 1) estimating the carbonate concentration of groundwater based on calcium concentration; 2) estimating the volume of groundwater that passes through the bedrock based on measured rainfall per square kilometer. Multiplying (1), a mass per volume, by (2), a volume, yields the mass of calcite dissolved each year per kilometer. Seems straightforward, right? Too simple! That is, until one verifies the assumptions that go into such a calculation.

First, Austin’s model assumes that “about 1.0 meter of the 1.22 meters of mean annual rainfall go into the aquifer [i.e. groundwater]”. He even prefaces the assumption with “it is reasonable to assume”, but why? What makes this reasonable? Anyone reading this has access to Google Maps or a similar program that offers a bird’s-eye view of Kentucky. What do you see? My map appears pretty green, because Kentucky is blanketed with trees—healthy ones at that. All of these trees require water, and any water taken up by trees does not infiltrate the bedrock. The process by which trees and other vegetation take up water from the soil is called transpiration. Precipitation can also return to the hydrologic cycle through evaporation. Collectively, these routes are referred to as evapotranspiration, and the Kentucky Climate Center reports a mean annual evapotranspiration rate of 32.77 inches for Kentucky.

To estimate the amount of rainfall that actually infiltrates the bedrock, we simply deduct 32.77 inches (0.83 meters) from the total rainfall amount: 48 inches (1.22 meters). The difference is 15.26 inches (0.39 meters), so Austin’s model is already off by a factor of ~2.5. Within the article, Austin speculates that Kentucky may have received significantly more rain in the past, thereby soliciting credibility for his initial calculation. There is no direct evidence, however, of higher rainfall for Kentucky in the past 5,000 years—certainly not approaching 2.5 times modern values. Using real climate data, Austin’s annually produced 59 cubic meter cave is thus reduced to 23.6 cubic meters (the equivalent of dropping the ceiling in our bedroom to only 5 feet). [Note: the evapotranspiration figure here is higher than I should have used; see comments for further discussion]

Secondly, Austin’s model assumes that about 100% of the calcium in groundwater is derived from calcite dissolution. He argues to this point by noting that rainwater contains negligible amounts of calcium and magnesium, so it must all be derived from the ground. On this point, he is correct—calcium in rainwater accounts for much less than 1% that dissolved in groundwater. So what is the source of the remaining ~48.9 milligrams per liter of calcium?

Before water can infiltrate into the bedrock, it must pass through the active soil horizons (with the exception of water that falls very near disappearing streams). Soil horizons—particularly in forested ecosystems—are heavily enriched in calcium, because they contain the decayed litter of tree leaves and twigs. Trees and other vegetation actively take up calcium from the weathered bedrock through their roots, thereby enriching the uppermost soil horizons in calcium and other nutrients by several orders of magnitude.

Since calcite dissolves rather quickly in even slightly acidic rainwater, much of the 49 mg/L of calcium in groundwater is derived from the uppermost soil horizons, and not subsurface caverns. Recent work in monitoring calcium isotopes at spring outlets and along carbonate aquifers confirms this phenomenon, since 44Ca is heavily depleted in the O/A horizons and shifts the isotopic composition of groundwater negative (more so during the wet months).

Carbon isotopes in cave deposits also confirm that a bulk of the dissolved carbonate material is derived from the soil rather than the surrounding bedrock. The δ values of most soils is between -25‰ and -15‰, while limestone bedrock is close to 0‰ (give or take). Carbon isotope values of speleothems are commonly between -10‰ and -2‰, reflecting a mixing value between the soil and bedrock signatures.

If the calcium in Austin’s equation is derived largely from the soil and not the expanding cave, then his estimate is wrong by nearly an order of magnitude. Austin is far from explaining the presence of large caverns—certainly in humid climates like Kentucky or Southeast Asia, but more so in arid climates like the American Southwest or Israel/Turkey, which he neglects to mention.

Conclusion

Cave dissolution occurs neither as rapidly nor as simply as Austin proposes. Soil activity, groundwater chemistry, and the presence of joints and faults in the bedrock play a significant role. Austin’s young-Earth model can benefit from none of these, however, since 1) rich soils could not have been present immediately after the flood, 2) pore waters would have been saturated in carbonate, and 3) joints and faults cannot form to serve as flow conduits in unconsolidated sediment (i.e. soft sediment that hasn’t yet been cemented together). More recent estimates suggest that cave conduits typically widen by less than a centimeter every ten years—a far cry from Austin’s 59-meter-long tunnel.

Along with speleothem formation, the problem of cave dissolution remains an immovable stumbling block to the young-Earth creationist, who must propose that both processes can complete in a few thousands of years. The massive, decorated caverns across the world may stand as testament to the beauty of God’s creation, but they strongly preclude the notion of a recent, global flood. Our time is better spent, I believe, reconciling these observations with scripture to better understand both.

––––––––––––––––––––––––––––––––––––––––––
Appendix
Austin devotes a section to secondary formations, but seems to have little experience on the matter. He notes, for example, that radiocarbon dating had been used to date speleothems but rejects the validity of these dates. He claims rather that the carbonate minerals should give deceptively old dates because the bedrock should contain little or no radioactive carbon. That is true, but geologists involved in dating speleothems already know this, so they assume that only a portion of the calcite in speleothems was derived from the atmosphere (i.e. soil-derived carbon) to calculate their dates. Austin’s skepticism is rooted, therefore, in a non sequitur.
At the time Austin’s article was written, speleothem analysis was in its infancy, so I must give him the benefit of the doubt. But his attempt at explaining the rate of speleothem growth is shown obviously to be flawed. Regarding a 2-meter stalagmite called “Great Dome”, he states:
“A large stalagmite like Great Dome may contain 100 million cubic centimeters of calcite, which, if accumulated in 4,000 years, would require a deposition rate of 25,000 cubic centimeters…yearly. If the dripping water is assumed to deposit 0.5 gram of calcite per liter, 133,000 liters of water would have to drip over the stalagmite each year. Because about 6,000 drops comprise 1 liter, it would take about 800 million drops of water per year to form the stalagmite. This works out to 25 drops of water per secondWhether a stalagmite would be deposited in the above hypothetical situation is not known.” (emphasis added)
Anyone that even owns a faucet should know that a drip rate of 25 drops per second is absurd. I would challenge Austin to find even a man-made device that could produce such a phenomenon. Regardless, the answer to Austin’s question is no, a stalagmite could not be deposited in this situation. The reason is that each drip requires time to degas and partially evaporate—otherwise it will not precipitate calcite, because, as Austin himself stated, the water is undersaturated with respect to calcite. Despite a noble attempt and a novel approach, Dr. Austin cannot explain the existence of caves and their decorations in a young-Earth paradigm.


Viewing all articles
Browse latest Browse all 6

Trending Articles